Three New Triterpenoid Saponins from the Seeds of Aesculus chinensis

Xiu Wei YANG*, Jing ZHAO, Yu Xin CUI

National Laboratory of Natural and Biomimetic Drugs, Beijing Medical University, Beijing 100083

Abstract: Three new triterpenoid saponins, escins IVg (1), IVh (2) and VIb (3) were isolated from the seeds of *Aesculus chinensis* along with two known saponins, escin IIIa (4) and desacylescin I (5). Their structures were elucidated by spectroscopic analysis and chemical hydrolysis.

Keywords: Aesculus chinensis, Hippocastanaceae, escins IIIa, IVg, IVh and Vib, desacylescin I.

Escins, the anti-inflammatory principle from the seeds of *Aesculus chinensis* Bge. (Hippocastanaceae) consist of a series of analogous pentacyclic triterpenoid oligo-glycosides. During our work on the saponin constituents from the seeds, we have isolated and identified 8 saponins, *i. e.*, escins Ia, Ib, IVa, IVb, IVc, IVd, IVe, IVf isoescins Ia and Ib¹⁻⁴. In continuation of our study, five more triterpenoid saponins were purified by preparative HPLC and identified on the basis of spectroscopic evidences. Among them, escin IIIa (4) and desacylescin I (=aesculuside B, 5) were identified by comparison of spectral data with the reported literature data^{5, 6}. In this paper, we report the structure elucidation of three new compounds.

Compound **1** was isolated as white amorphous powder. MALDI-TOF-MS showed quasimolecular ion peaks at m/z 1111 [M+Na]⁺ and 1127 [M+K]⁺, corresponding to the composition of C₅₃H₈₄O₂₃. Alkaline hydrolysis of **1** with 1% MeONa liberated the substance which had the same retention time with authentic desacylescin I in HPLC analysis and acid hydrolysis of **1** yielded glucose and glucuronic acid. The ¹H and ¹³C NMR signals were assigned by a combination of HMQC, HMBC and NOESY spectra which included signals due to the protoaescigenin skeleton¹ [¹H NMR: $\delta 0.62$ (Me-25), 0.77 (Me-26), 1.26 (Me-23), 1.31 (Me-29), 1.40 (Me-30) and a broad singlet at $\delta 5.42$ (H-12)], a trisaccharide moiety [¹H NMR: β -anomeric protons at $\delta 5.55$ (d, *J*=8Hz, H-1"), 5.21 (d, *J*=8Hz, H-1") and 4.77 (d, *J*=8Hz, H-1'); ¹³C NMR: anomeric carbons at $\delta 104.2$ (C-1' and C-1"') and 104.1 (C-1")] and a tigloyl group [¹H NMR: $\delta 6.98$ (H-3"''), 1.80 (Me-5"'') and 1.44 (Me-4"''); ¹³C NMR: $\delta 169.3$ (C-1"''), 129.4 (C-2"''), 136.7 (C-3"''), 13.9 (C-4"'') and 12.2 (C-5'''')]. The attachment of the tigloyl group at C-22 was deduced from HMBC experiment, which showed long-range correlation

Xiu Wei YANG et al.

between H-22 β ($\delta 6.16$) and the carbonyl carbon ($\delta 169.3$) of the tigloyl group. Furthermore, the trisaccharidie structure was characterized by HMBC correlations between the following pairs: C-3 (890.9) and H-1'; C-2' (879.5) and H-1" and C-4' (\delta82.7) and H-1". Comparison of the ¹³C NMR spectral data ascribable to the sugar moiety revealed the identical trisaccharide unit with that of desacylescin I⁵ and escin Ia¹ which was definitely identified by single crystal X-ray analysis. On the basis of the 1 above evidences, the structure of was determined as 22α-O-tigloylprotoaescigenin-3β-O-[β-D-glucopyranosyl $(1\rightarrow 2)]$ $[\beta$ -D-glucopyranosyl (1 \rightarrow 4)]- β -D-glucopyranosiduronic acid, and named escin IVg.

Figure Structures of Compounds 1-5

Compound 2 was isolated as white amorphous powder. The MALDI-TOF-MS showed the quasimolecular ion peaks at m/z 1111 [M+Na]⁺ and 1133 [M+2Na-H]⁺, corresponding to the molecular formula of C₅₃H₈₄O₂₃, identical with compound 1. Comparison of the ¹H and ¹³C NMR spectra with those of 1 led to the conclusion that an angeloyl group appeared in the structure instead of a tigloyl group. The HMBC experiment confirmed the same acylation position and the same structure of the trisaccharide moiety and alkaline hydrolysis of 2 also yielded desacylescin I. Therefore,

1032

2 was established as 22 α -O-angeloylprotoaescigenin-3 β -O-[β -D-glucopyranosyl (1 \rightarrow 2)] [β -D-glucopyranosyl (1 \rightarrow 4)]- β -D-glucopyranosiduronic acid, and named escin IVh. Compounds **1** and **2** are a pair of geometrical isomers.

Table¹³C NMR Spectral Data for Escins IVg (1), IVh (2), VIb (3), IIIa (4) and Desacylescin I (5)
(δ values)^a

С	1	2	3	4	5	С	1	2	3	4	5
1	38.3	38.3	38.4	38.8	38.3	1'	104.2	104.2	104.7	104.6	104.5
2	26.2	26.2	26.4	26.3	26.4	2'	79.5	79.6	79.4	82.5	79.5
3	90.9	90.9	91.2	89.9	90.9	3'	76.5	76.4	76.7	76.8	76.4
4	43.4	43.4	43.6	39.4	43.5	4'	82.7	82.7	82.4	81.2	81.9
5	55.9	55.9	56.0	55.7	55.9	5	75.4	75.5	75.8	74.2	75.5
6	18.4	18.3	18.4	18.4	18.4	6'	175.0	175.1	172.9	175.3	172.9
7	33.0	33.0	33.1	33.1	33.0	1"	104.1	103.9	104.1	105.2	104.0
8	39.7	39.7	39.9	40.0	39.8	2"	75.4	75.5	75.6	74.7	75.5
9	46.5	46.5	46.7	46.8	46.6	3"	78.1	78.2	78.2	74.7	78.1
10	36.2	36.2	36.3	36.4	36.3	4"	69.6	69.6	69.8	71.8	69.6
11	23.9	23.9	23.9	23.9	23.9	5"	77.4	77.4	78.0	76.6	77.9
12	123.2	123.0	123.2	123.3	122.7	6"	61.4	61.4	61.6	61.9	61.4
13	143.1	143.1	141.8	142.8	143.8	1'''	104.2	104.3	104.7	104.3	104.5
14	40.2	40.2	41.3	41.6	41.8	2'''	74.8	74.8	73.9	74.2	74.8
15	34.6	34.6	30.9	34.6	34.1	3'''	77.9	78.2	78.4	78.1	78.3
16	68.9	69.0	71.5	68.0	67.7	4'''	71.2	71.1	71.5	71.3	71.3
17	48.0	47.7	47.6	47.9	47.2	5'''	77.8	77.8	77.9	77.8	77.8
18	41.4	41.4	39.9	40.0	41.0	6'''	61.9	61.9	62.2	62.8	62.2
19	47.5	47.5	47.2	47.2	48.1	1""	169.3	169.4	168.3	167.9	
20	36.8	36.9	36.0	36.7	36.2	2""	129.4	129.3	129.2	129.4	
21	76.5	76.6	79.8	79.3	78.5	3""	136.7	136.5	136.0	136.8	
22	77.4	77.1	71.0	74.2	77.0	4''''	13.9	15.8	15.9	14.2	
23	22.3	22.3	22.4	28.0	22.2	5''''	12.2	20.8	21.0	12.4	
24	63.1	63.1	63.2	16.8	63.2	1'''''			170.0	170.9	
25	15.4	15.4	15.5	15.7	15.4	2"""			22.2	20.8	
26	16.5	16.5	16.6	16.8	16.5						
27	27.3	27.4	27.0	27.4	27.2						
28	63.9	64.1	64.8	63.7	68.0						
29	30.1	30.1	30.0	29.5	30.4						
30	19.2	19.2	20.1	20.1	19.3						

^a Measured in pyridine- d_5 .

Compound **3** was obtained as white amorphous powder. The MALDI-TOF-MS exhibited molecular ion peak at m/z 1153 $[M+Na]^+$ corresponding to the molecular formula of $C_{55}H_{86}O_{24}$. It suggested that it may have the same molecular composition as escin Ia¹. The ¹H and ¹³C NMR spectra exhibited signals assignable to the proto-aescigenin skeleton¹, an angeloyl group [¹H NMR: $\delta 5.87$ (H-3^{'''}), 1.90 (Me-5^{''''}) and 1.98 (Me-4^{''''}); ¹³C NMR: $\delta 168.3$ (C-1^{''''}), 129.2 (C-2^{''''}), 136.0 (C-3^{''''}), 15.9 (C-4^{''''}) and 21.0 (C-5^{''''})], an acetyl group [¹H NMR: $\delta 2.50$ (Me-OAc); ¹³C NMR: $\delta 170.0$ (C-1^{''''}) and 22.2 (C-2^{'''''})] and a trisaccharide moiety [¹H NMR: $\delta 4.79$ (d, *J*=7.5Hz, H-1''), 5.33 (d, *J*=7.5Hz, H-1''') and 5.60 (d, *J*=7.5Hz, H-1''); ¹³C NMR: $\delta 104.7$ (C-1'' and C-1''') and 104.1 (C-1'')]. Compared with the protoaescigenin skeleton of desacylescin I, however, C-16 shifted downfield for 3.8ppm while C-15 shifted upfield

Xiu Wei YANG et al.

for 3.2ppm. HMBC spectrum showed the correlation peak between H-16 β (δ 5.90) and the carbonyl carbon (δ 168.3) of the angeloyl group. Thus the linkage site of the angeloyl group must be at C-16. The acetyl group was determined to linked to C-21 by deshielding of 1.3 ppm for C-21 and shielding of 6.0ppm for C-22 relative to desacylescin I and further suggested by NOE correlation between H-21 α (δ 5.95) and Me-OAc (δ 2.50) in the NOESY spectrum. The sugar moiety was determined to be identical with desacylescin I for the chemical shifts of the sugar moiety in the ¹H and ¹³C NMR spectra were coincident with those of desacylescin I, and the alkaline hydrolysate of **3** was desacylescin I. Consequently, the structure of **3** was confirmed as 16 α -O-angeloyl-21 β -O-acetylprotoaescigenin-3 β -O-[β -D-glucopyranosyl (1 \rightarrow 2)] [β -D-glucopyranosyl (1 \rightarrow 4)] - β -D-glucopyranosiduronic acid, and named escin VIb. It was the first C-16 acylated saponin ever isolated from escins.

Acknowledgment

This work is supported by the National Natural Science Foundation of China (29972004)

References

- J. Zhao, X. W. Yang, Y. X. Cui, X. H. Liu, S. Y. Liu, H. Y. Zhi, J. Y. Chen, F. B. Zhu, Z. X. Jiang, Y. L. Xue and D. B. Liu, *Chin. Chem. Lett.*, **1999**, *10* (4), 291.
- 2. J. Zhao, X. W. Yang, Y. X. Cui and X. H. Liu, Chin. Chem. Lett., 1999, 10 (6), 473.
- 3. J. Zhao, X. W. Yang, Y. X. Cui and X. H. Liu, Chin. Chem. Lett., 1999, 10 (9), 767.
- 4. X. W. Yang, J. Zhao, Y. X. Cui and L. H. Zhang, Chin. Chem. Lett., 1999, 10 (11), 925.
- 5. B. Singh, P. K. Agrawal and R. S. Thakur, J. Nat. Prod. 1987, 50 (5), 781.
- 6. M. Yoshikawa, T. Murakami, H. Matsuda, J. Yamahara, N. Murakami and I. Kitagawa, *Chem. Pharm. Bull.* **1996**, *44* (8), 1454.

Received 23 June 1999

1034